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WAVE PROPAGATION OVER THE FREE SURFACE OF A TWO-PHASE

MEDIUM WITH A NONUNIFORM CONCENTRATION

OF THE DISPERSE PHASE

UDC 532.59:532.547; 517.958V. A. Barinov and N. N. Butakova

The boundary-value problem of waves on the surface of a two-phase medium with a nonuniform
(exponential) distribution of the disperse phase is formulated. An asymptotic solution of the linear
problem in the form of damped progressive waves is obtained. The phase velocity, frequency, and
damping decrement for the waves are found. The perturbation of the admixture concentration is
determined, which, unlike in the case of a uniform distribution, is manifested even in a linear ap-
proximation. Numerical calculations were performed for concrete media.
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Introduction. The linear problem of wave propagation over the free surface of a two-phase mixture with a
uniform distribution of the disperse phase was solved in [1] and the nonlinear problem was solved in [2, 3]. These
studies found the dependence of the wave parameters on the initial (unperturbed) admixture concentration, and its
wave perturbation was obtained in [2, 3]. It was shown that in the case of a constant unperturbed concentration,
its perturbation is a quantity of the higher order of smallness than the other quantities. The present paper deals
with the formulation and solution of the problem of plane waves on the surface of a two-phase medium with an
exponential distribution of the disperse-phase concentration over the depth. The multiple-velocity model of motion
used in this case is more general than those employed in the above-mentioned studies because the equations of
motion take into account not only interfacial friction but also the added-mass force.

1. Mathematical Model. We consider a two-phase mixture layer of constant depth on a horizontal solid
substrate. From above, the layer is bounded by a free surface. The carrier phase (i = 1) is an ideal incompressible
fluid, whose viscosity is manifested only at the interface, and the disperse phase (i = 2) consists of rigid particles.
In the absence of heat and mass transfer, the motion of this medium is described by the following system of
equations [4]:

∂ρi

∂t∗
+∇(ρiv

∗
i ) = 0,

ρi
dv∗i
dt∗

= −αi∇Pi + (−1)iα1α2

[ρ0
1

2

(dv∗1
dt∗

− dv∗2
dt∗

)
+R(v∗1 − v∗2)

]
+ ρig, (1.1)

ρi = ρ0
iαi, α1 + α2 = 1, ρ0

i = const, i = 1, 2.

Here αi, v∗i , Pi, ρi, and ρ0
i are the volume concentration, velocity, pressure, and reduced and true densities of the

ith phase, respectively, g is the acceleration of gravity, the coefficient R characterizes the Stokes viscous friction,
e.g., for spherical particles of radius a, we have R = 9η/(2a2) [4], where η is the dynamic viscosity of the fluid; an
asterisk denotes dimensional quantities (where necessary).
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We introduce Cartesian coordinates in such manner that the unperturbed free surface coincides with the
plane z∗ = 0 and the bottom with the plane z∗ = −l∗ (l∗ is the depth of the layer); the z∗ axis is directed upward. We
assume that in the absence of waves, the medium is at rest and the disperse phase is distributed exponentially over
the depth of the mixture layer, i.e., α0

2(z
∗) = α0 exp (θδ∗z∗). Here α0 is the particle concentration at the unperturbed

surface z∗ = 0; δ∗ is a positive empirical coefficient that depends on the physical properties of the medium; the
coefficient θ = 1 for ρ0

2 < ρ0
1 or θ = −1 at ρ0

2 > ρ0
1. Experimental observations of admixture distributions over the

depth of quiescent mixtures [5] show that this model is fairly accurate. In order for system (1.1) to describe the wave
motion of the mixture, it is necessary to introduce the wave perturbations of the concentration and pressure [1]:

α1 = 1− α0 exp (θδ∗z∗)− α′, α2 = α0 exp (θδ∗z∗) + α′,

Pi = Pa − ρ0
i gz

∗ + p′, i = 1, 2.
(1.2)

Here α′ is the wave perturbation of the disperse-phase concentration and p′ is the pressure perturbation. Substi-
tuting (1.2) into (1.1), we obtain the following system equations for the wave motion of the mixture:

−∂α
′

∂t∗
+ (1− α0 exp (θδ∗z∗)− α′)∇ · v∗1 − α0θδ

∗ exp (θδ∗z∗)v∗1z − v∗1 · ∇α′ = 0,

∂α′

∂t∗
+ (α0 exp (θδ∗z∗) + α′)∇ · v∗2 + α0θδ

∗ exp (θδ∗z∗)v∗2z + v∗2 · ∇α′ = 0,

(
ρ0
1 +

ρ0
1

2
(α0 exp (θδ∗z∗) + α′)

)dv∗1
dt∗ (1.3)

− ρ0
1

2
(α0 exp (θδ∗z∗) + α′)

dv∗2
dt∗

−R(α0 exp (θδ∗z∗) + α′)(v∗2 − v∗1) +∇p′ = 0,

(
ρ0
2 +

ρ0
1

2
(1− α0 exp (θδ∗z∗)− α′)

)dv∗2
dt∗

− ρ0
1

2
(1− α0 exp (θδ∗z∗)− α′)

dv∗1
dt∗

+R(1− α0 exp (θδ∗z∗)− α′)(v∗2 − v∗1) +∇p′ = 0.

On the free surface z∗ = ξ(t∗, x∗, y∗), the following kinematic and dynamic boundary conditions are satis-
fied [1]:

α1v
∗
1n + α2v

∗
2n = Vn, P = α1P1 + α2P2 = Pa.

Here α1v
∗
1n + α2v

∗
2n and Vn are the normal projections of the volume flow velocity of the mixture and the free

surface. With allowance for (1.2), the boundary conditions for the case of plane–parallel wave motion become

∂ξ

∂t∗
− (1− α0 exp (θδ∗ξ)− α′)v∗1z − (α0 exp (θδ∗ξ) + α′)v∗2z

+
∂ξ

∂x∗

[
(1− α0 exp (θδ∗ξ)− α′)v∗1x + (α0 exp (θδ∗ξ) + α′)v∗2x

]
= 0, (1.4)

p−
[
ρ0
1(1− α0 exp (θδ∗ξ)− α′) + ρ0

2(α0 exp (θδ∗ξ) + α′)
]
gξ = 0, z∗ = ξ(t∗, x∗).

Assuming that there is no mass flux through the solid surface of the horizontal substrate and the mixture slips
along it, we obtain the following nonpenetration condition at the bottom (z∗ = −l∗) [4]:

v∗iz = 0, i = 1, 2. (1.5)

Equations (1.3) and boundary conditions (1.4) and (1.5) constitute a mathematical model for the wave
motion of the disperse mixture with a nonuniform distribution of the second phase in the layer at rest.

2. Formulation of the Boundary-Value Problem. Let a wave of length λ propagate over the free
surface of the layer in the positive x∗ direction. The wave length is much greater than the characteristic size of the
disperse particles (λ� a). For progressive waves, it is assumed [6] that the solution can include the variable x∗ only
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in the combination x∗ − c∗t∗, where c∗ is the phase velocity of the wave, which is to be determined. We introduce
the following dimensionless variables and quantities:

t = kc∗t∗, x = kx∗, z = kz∗, l = kl∗, µi = ρ0
i /ρ

0, r = R/(ρ0kc0),

δ = δ∗/k, γ = α′/α0, ζ = kξ, vi = v∗i /c0, p = p′/(ρ0c20), c = c∗/c0.
(2.1)

Here ρ0 = (1 − α0)ρ0
1 + α0ρ

0
2 is the density of the quiescent mixture at the unperturbed free surface, c0 is the

phase velocity of the wave that corresponds to a uniform distribution of the admixture in the quiescent layer in a
linear approximation, and k = 2π/λ is the wave number. Substituting (2.1) into system (1.3)–(1.5), we obtain the
following boundary-value problem:

−α0c
∂γ

∂t
+ (1− α0 exp (θδz)− α0γ)

(∂v1x

∂x
+
∂v1z

∂z

)
− α0θδ exp (θδz)v1z − α0

(
v1x

∂γ

∂x
+ v1z

∂γ

∂z

)
= 0,

α0c
∂γ

∂t
+ α0(exp (θδz) + γ)

(∂v2x

∂x
+
∂v2z

∂z

)
+ α0θδ exp (θδz)v2z + α0

(
v2x

∂γ

∂x
+ v2z

∂γ

∂z

)
= 0,

(
µ1 +

µ1

2
(α0 exp (θδz) + α0γ)

)
c
∂v1s

∂t
− µ1

2
(α0 exp (θδz) + α0γ)c

∂v2s

∂t

− r(α0 exp (θδz) + α0γ)(v2s − v1s) +
∂p

∂s
− µ1

2
(α0 exp (θδz) + α0γ)

(
v2x

∂v2s

∂x
+ v2z

∂v2s

∂z

)
+

(
µ1 +

µ1

2
(α0 exp (θδz) + α0γ)

)(
v1x

∂v1s

∂x
+ v1z

∂v1s

∂z

)
= 0,

(
µ2 +

µ1

2
(1− α0 exp (θδz)− α0γ)

)
c
∂v2s

∂t
− µ1

2
(1− α0 exp (θδz)− α0γ)c

∂v1s

∂t

(2.2)

+ r(1− α0 exp (θδz)− α0γ)(v2s − v1s) +
∂p

∂s
− µ1

2
(1− α0 exp (θδz)− α0γ)

(
v1x

∂v1s

∂x
+ v1z

∂v1s

∂z

)
+

(
µ2 +

µ1

2
(1− α0 exp (θδz)− α0γ)

)(
v2x

∂v2s

∂x
+ v2z

∂v2s

∂z

)
= 0,

s = x, z.

The dimensionless kinematic and dynamic conditions at the free surface z = ζ(t, x) are written as follows:

c
∂ζ

∂t
− (1− α0 exp (θδζ))v1z − α0 exp (θδζ)v2z

+
∂ζ

∂x
[(1− α0 exp (θδζ))v1x + α0 exp (θδζ)v2x]

− α0γ(v2z − v1z) + α0γ
∂ζ

∂x
(v2x − v1x) = 0,

(2.3)

p− (µ1(1− α0 exp (θδζ)) + µ2α0 exp (θδζ))ν2
0ζ + α0(µ1 − µ2)ν2

0γζ = 0, ν2
0 = g/(kc20).

At the bottom (z = −l), we have

viz = 0, i = 1, 2. (2.4)

The equations and boundary conditions (2.2)–(2.4) constitute a nonlinear boundary-value problem of de-
termining the velocities of wave motion of the phases, the free-surface profile, and the pressure and concentration
perturbations.

3. Solution of the Linear Problem. Let us consider a linear version of problem (2.2)–(2.4). We
assume that the wave amplitude is smaller than the wavelength. Then, the kinematic and dynamic boundary
conditions (2.3) specified at the unknown surface z = ζ(t, x) can be reduced to the conditions at the fixed surface
z = 0. For this, all unknown functions included in them should be expanded in a Taylor series in the neighborhood
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of z = 0 [in particular, exp (θδζ) = 1 + θδζ + δ2ζ2/2 + . . .]. In addition, for surface waves of small amplitude,
the velocities of wave motion of the phases and the wave perturbations are of the same order of magnitude as the
quantity ζ, i.e., they are small [6]. Taking into account the smallness of the unknown quantities in (2.2)–(2.4), in
Eqs. (2.2) and boundary conditions (2.3) expanded in a series in the neighborhood of z = 0, we retain only terms
that are linear with respect to them. As a result, we have the linear problem

−α0c
∂γ

∂t
+ (1− α0 exp (θδz))

(∂v1x

∂x
+
∂v1z

∂z

)
− α0θδ exp (θδz)v1z = 0,

c
∂γ

∂t
+ exp (θδz)

(∂v2x

∂x
+
∂v2z

∂z

)
+ θδ exp (θδz)v2z = 0,

(
µ1 +

µ1

2
α0 exp (θδz)

)
c
∂v1s

∂t
− µ1

2
α0 exp (θδz)c

∂v2s

∂t
− rα0 exp (θδz)(v2x − v1x) +

∂p

∂s
= 0,

(
µ2 +

µ1

2
(1− α0 exp (θδz))

)
c
∂v2s

∂t
− µ1

2
(1− α0 exp (θδz))c

∂v1s

∂t

(3.1)

+ r(1− α0 exp (θδz))(v2s − v1s) +
∂p

∂s
= 0, s = x, z,

c
∂ζ

∂t
= (1− α0)v1z + α0v2z, p− ν2

0ζ = 0, ν2
0 =

g

kc20
, z = 0.

The conditions at the bottom (2.4) remain unchanged.
Elimination of the unknown functions reduces system (3.1) to the problem for determining the pressure

perturbation p(t, x, z):

c2µ1(ρ(z) + 2µ2)(µ1 + 2µ(z))
∂2

∂t2
∆p+ 4cr(µ1ρ(z) + µ(z)ρ(z) + µ1µ2)

∂

∂t
∆p+ 4r2ρ(z)∆p

= ρ′(z)
[
3c2µ1(µ1 + 2µ2)

∂3p

∂t2 ∂z
+ 4cr(2µ1 + µ2)

∂2p

∂t ∂z
+ 4r2

∂p

∂z

]
,

∂3p

∂t3
+

2r
cµ1(1 + 2µ2)

∂2p

∂t2
+

(µ1 + 2µ0)ν2
0

c2µ1(1 + 2µ2)
∂2p

∂t ∂z
+

2rν2
0

c3µ1(1 + 2µ2)
∂p

∂z
= 0, z = 0,

(3.2)

∂p

∂z
= 0, z = −l,

where

ρ(z) = µ1 + α0 exp (θδz)(µ2 − µ1), µ(z) = µ2 − α0 exp (θδz)(µ2 − µ1),

µ0 = µ(0), ∆ = ∂2/∂x2 + ∂2/∂z2.

The unknown phase velocity of the wave c should be sought using the free-surface condition (3.2) in determining p.
After that, the velocities of wave motion, the concentration perturbation, and the free-surface profile can be found
from Eqs. (3.1).

The solution of the linear problem should meet a number of requirements. The relative motion of the phases
leads to attenuation of the wave motion. In the absence of the disperse phase (α0 = 0) or in the case of identical
true densities of the phases (ρ0

1 = ρ0
2), the solution of the problem becomes the well-known wave solutions for

liquids [6]. Therefore, in the case of propagation of progressive waves over the free surface of the mixture, the
solution of problem (3.2) should be sought in the form

p = exp (−bt)[M(z) sin (x− t) +N(z) cos (x− t)]/ sinh l, (3.3)

where b = β/(kc∗) is the dimensionless damping decrement (β is the dimensional decrement).
Substituting (3.3) into (3.2) and setting the coefficients at sin (x−t) and cos (x−t) equal to zero, we obtain a

system of differential equations and boundary conditions. The equations for the unknown functions M(z) and N(z)
have the form
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[4r2ρ(z)− 4bcr(µ1ρ(z) + µ(z)ρ(z) + µ1µ2)

+ c2(b2 − 1)µ1(ρ(z) + 2µ2)(µ1 + 2µ(z))](M ′′(z)−M(z))

+ 2c[2r(µ1ρ(z) + µ(z)ρ(z) + µ1µ2)− cbµ1(ρ(z) + 2µ2)(µ1 + 2µ(z))](N ′′(z)−N(z))

= [4r2 − 4bcr(2µ1 + µ2) + 3c2(b2 − 1)µ1(µ1 + 2µ2)]ρ′(z)M ′(z)

+ 2c[2r(2µ1 + µ2)− 3cbµ1(µ1 + 2µ2)]ρ′(z)N ′(z),

2c[2r(µ1ρ(z) + µ(z)ρ(z) + µ1µ2)− cbµ1(ρ(z) + 2µ2)(µ1 + 2µ(z))](M ′′(z)−M(z))
(3.4)

− [4r2ρ(z)− 4bcr(µ1ρ(z) + µ(z)ρ(z) + µ1µ2)

+ c2(b2 − 1)µ1(ρ(z) + 2µ2)(µ1 + 2µ(z))](N ′′(z)−N(z))

= 2c[2r(2µ1 + µ2)− 3cbµ1(µ1 + 2µ2)]ρ′(z)M ′(z)

− [4r2 − 4bcr(2µ1 + µ2) + 3c2(b2 − 1)µ1(µ1 + 2µ2)]ρ′(z)N ′(z).

At z = 0, the following conditions should be satisfied:

M(z)[c3b(3− b2)µ1(1 + 2µ2) + 2c2r(b2 − 1)] +M ′(z)ν2
0(2r − cb(µ1 + 2µ0))

+N(z)[c3(3b2 − 1)µ1(1 + 2µ2)− 4c2br] +N ′(z)ν2
0c(µ1 + 2µ0) = 0,

M(z)[c3(3b2 − 1)µ1(1 + 2µ2)− 4c2br] +M ′(z)ν2
0c(µ1 + 2µ0)

(3.5)

−N(z)[c3b(3− b2)µ1(1 + 2µ2) + 2c2r(b2 − 1)]−N ′(z)ν2
0(2r − cb(µ1 + 2µ0)) = 0.

At z = −l, we have

M ′(z) = 0, N ′(z) = 0. (3.6)

The solution of system (3.4) is sought in the form of series in a small parameter. As the small parameter
we take δ, thus assuming that the admixture distribution in the quiescent layer is nearly uniform. The unknowns
in (3.4)–(3.6) are sought in the form

M(z) =
∞∑

k=0

δkMk(z), N(z) =
∞∑

k=0

δkNk(z), b =
∞∑

k=0

δkbk, c = 1 +
∞∑

k=1

δkck. (3.7)

Setting δ = 0 in (3.4)–(3.6), we obtain the problem with a uniform admixture concentration in the quiescent layer [1].
Therefore, the solution of the problem in the zeroth approximation is written as

M0(z) = K0 cosh (z + l), N0(z) = L0 cosh (z + l),

c20 =
µ1 + 2µ0

µ1(1 + 2µ2)
ν2
1 tanh l + β̃

(
3β̃ − 4r1

µ1(1 + 2µ2)

)
,

β̃ =
[
− χ

2
+

√
χ2

4
+
ψ3

27

]1/3

+
[
− χ

2
−

√
χ2

4
+
ψ3

27

]1/3

+
2r1

3µ1(1 + 2µ2)
,

ψ = (3µ1(1 + 2µ2)(µ1 + 2µ0)ν2
1 tanh l − 4r21)/(12µ2

1(1 + 2µ2)2),
(3.8)

χ = r1[4r21 + 9µ1(1 + 2µ2)(µ1 − µ+ 3µ1µ2)ν2
1 tanh l]/(54µ3

1(1 + 2µ2)3),

r1 = c0r = R/(ρ0k), β̃ = c0b0 = β0/k, ν2
1 = c20ν

2
0 = g/k,
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where K0 and L0 are arbitrary constants and β0 is the dimensional damping decrement corresponding to the linear
problem. Formulas (3.8) differ from those given in [1] by the terms due to the added-mass force. If this force is
ignored in the initial equations (1.1), Eqs. (3.8) completely coincide with the results of [1].

To obtain equations and boundary conditions to find a first-approximation solution, we need to substi-
tute (3.7) into (3.4)–(3.6). The small parameter δ appears explicitly in Eqs. (3.4); therefore, the quantities included
in them should be previously expanded in a series in powers of δ. Substituting (3.7) into (3.4)–(3.6) and taking
account of (3.8), for the unknown quantities M1(z) and N1(z), we obtain the following boundary-value problem:

[4r2 − 4b0r(µ1 + µ0 + µ1µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)](M ′′
1 (z)−M1(z))

+ 2[2r(µ1 + µ0 + µ1µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)](N ′′
1 (z)−N1(z))

= θα0(µ2 − µ1){[4r2 − 4b0r(2µ1 + µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)]K0

+ 2[2r(2µ1 + µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)]L0} sinh (z + l) = 0,

2[2r(µ1 + µ0 + µ1µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)](M ′′
1 (z)−M1(z))

(3.9)

− [4r2 − 4b0r(µ1 + µ0 + µ1µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)](N ′′
1 (z)−N1(z))

= θα0(µ2 − µ1){2[2r(2µ1 + µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)]K0

− [4r2 − 4b0r(2µ1 + µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)]L0} sinh (z + l) = 0.

At z = 0, the following conditions should be satisfied:

M1(z)[b0(3− b20)µ1(1 + 2µ2) + 2r(b20 − 1)] +M ′
1(z)ν

2
0(2r − b0(µ1 + 2µ0))

+N1(z)[(3b20 − 1)µ1(1 + 2µ2)− 4b0r] +N ′
1(z)ν

2
0(µ1 + 2µ0)

+ b1{[(4b0r − 3(b20 − 1)µ1(1 + 2µ2)) cosh l − ν2
0(µ1 + 2µ0) sinh l]K0

+ 2[3b0µ1(1 + 2µ2)− 2r] sinh lL0}

+ c1{[(4r(b20 − 1) + 3b0(3− b20)µ1(1 + 2µ2)) cosh l − ν2
0b0(µ1 + 2µ0) cosh l]K0

+ [(3(3b20 − 1)µ1(1 + 2µ2)− 8rb0) cosh l + ν2
0(µ1 + 2µ0) sinh l]L0} = 0, z = 0,

M1(z)[(3b20 − 1)µ1(1 + 2µ2)− 4b0r] +M ′
1(z)ν

2
0(µ1 + 2µ0) (3.10)

−N1(z)[b0(3− b20)µ1(1 + 2µ2) + 2r(b20 − 1)]−N ′
1(z)ν

2
0(2r − b0(µ1 + 2µ0))

+ b1{2[3b0µ1(1 + 2µ2)− 2r] sinh lK0

− [(4b0r − 3(b20 − 1)µ1(1 + 2µ2)) cosh l − ν2
0(µ1 + 2µ0) sinh l]L0}

+ c1{[(3(3b20 − 1)µ1(1 + 2µ2)− 8rb0) cosh l + ν2
0(µ1 + 2µ0) sinh l]K0

− [(4r(b20 − 1) + 3b0(3− b20)µ1(1 + 2µ2)) cosh l − ν2
0b0(µ1 + 2µ0) cosh l]L0} = 0, z = 0.

At the bottom, we have following conditions:

M ′
1(z) = 0, N ′

1(z) = 0, z = −l. (3.11)

The solution of the system of linear inhomogeneous equations with constant coefficients (3.9) that satisfies
the condition at the bottom (3.11) has the form

M1(z) = K1 cosh (z + l) + (Y1K0 + Y2L0)(z cosh (z + l)− sinh (z + l)),

N1(z) = L1 cosh (z + l) + (−Y2K0 + Y1L0)(z cosh (z + l)− sinh (z + l)),
(3.12)
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where the coefficients K1 and L1 are arbitrary and Y1 and Y2 are defined by the expressions

Y1 = θα0(µ2 − µ1){[4r2 − 4b0r(2µ1 + µ2) + 3(b20 − 1)µ1(µ1 + 2µ2)]

× [4r2 − 4b0r(µ1 + µ0 + µ1µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)]

+ 4[2r(2µ1 + µ2)− 3b0µ1(µ1 + 2µ2)][2r(µ1 + µ0 + µ1µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)]}/(2D1),

Y2 = θα0(µ2 − µ1){[4r2 − 4b0r(µ1 + µ0 + µ1µ2) + (b20 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)] (3.13)

× [2r(2µ1 + µ2)− 3b0µ1(µ1 + 2µ2)]− [4r2 − 4b0r(2µ1 + µ2) + 3(b20 − 1)µ1(µ1 + 2µ2)]

× [2r(µ1 + µ0 + µ1µ2)− b0µ1(1 + 2µ2)(µ1 + 2µ0)]}/D1,

D1 = (4r2 − 4b0rµ1(1 + 2µ2) + (b20 + 1)µ2
1(1 + 2µ2)2)(4r2 − 4b0r(µ1 + 2µ0) + (b20 + 1)(µ1 + 2µ0)2).

As is known [7], in order for the expansion to be uniformly suitable, the ratios Mn(z)/Mn−1(z) and
Nn(z)/Nn−1(z) should be limited over the entire range of z. In this case, this condition is satisfied if the condition
l < δ−1 is valid. The coefficient δ can be expressed in terms of the admixture concentration at the surface (α0)
and at the bottom [αl = α(−l) = α0 exp (−θδl)]. From the last equality, we obtain δ = l−1 ln (α0/αl)θ. Then, the
inequality l < δ−1 should be rewritten as ln (α0/αl)θ < 1, whence we obtain the following constraints on the region
of applicability of the model:

α0/αl < e at ρ0
2 < ρ0

1, αl/α0 < e at ρ0
2 > ρ0

1.

Thus, this model adequately describes the wave process if the disperse-phase concentration varies over the layer
depth by a factor of less than e.

Substituting (3.12) into conditions (3.10) and taking into account the solution of the linear problem (3.7),
we find that a nontrivial solution for K0 and L0 exists only if the following equalities hold:

b1[(4b0r − 3(b20 − 1)µ1(1 + 2µ2)) cosh l − ν2
0(µ1 + 2µ0) sinh l]

+ c1[(4r(b20 − 1) + 3b0(3− b20)µ1(1 + 2µ2)) cosh l − ν2
0b0(µ1 + 2µ0) cosh l]

+ ν2
0 tanh l[(2r − b0(µ1 + 2µ0))Y1 − (µ1 + 2µ0)Y2] = 0,

2b1[3b0µ1(1 + 2µ2)− 2r] + c1[(3(3b20 − 1)µ1(1 + 2µ2)− 8rb0) coth l + ν2
0(µ1 + 2µ0)]

+ν2
0 tanh l[(µ1 + 2µ0)Y1 + (2r − b0(µ1 + 2µ0))Y2] = 0.

From this system of linear inhomogeneous equations, we obtain b1 and c1:

b1 = ν2
0{Y1[− tanh 2 l(16b0r2 + 2r[µ1 + 6µ1µ2 − 4µ0 − b20(11µ1 + 18µ1µ2 + 4µ0)]

+ 6b0(b20 + 1)µ1(1 + 2µ2)(µ1 + 2µ0)) + 2ν2
0r(µ1 + 2µ0) tanh 3 l]

+ Y2[− tanh 2 l(8(b20 − 1)r2 + 2b0r[7µ1 + 18µ1µ2 − 4µ0 − b20(5µ1 + 6µ1µ2 + 4µ0)]

+ 3(b40 − 1)µ1(1 + 2µ2)(µ1 + 2µ0)) + ν2
0(2b0r − (b20 + 1)(µ1 + 2µ0))(µ1 + 2µ0) tanh 3 l]}/D2,

c1 = ν2
0{Y1[tanh 2 l(8r2 − 12b0r(µ1 + 2µ2) + 3(b20 + 1)(µ2

1 + 2µ1µ
0 + 2µ2

1µ2 + 4µ0µ1µ2)) (3.14)

− ν2
0(µ1 + 2µ0)2 tanh 3 l] + Y2[tanh 2 l(8b0r2 + 2r[µ1 + 6µ1µ2 − 4µ0 − b20(5µ1 + 6µ1µ2 + 4µ0)]

+ 3b0(b20 + 1)µ1(1 + 2µ2)(µ1 + 2µ0))− ν2
0(2r − b0(µ1 + 2µ0))(µ1 + 2µ0) tanh 3 l]}/D2,

D2 = ν4
0(µ1 + 2µ0)2 tanh 2 l − 2(µ1 + 2µ0)[4b0r + 3(1− b20)µ1(1 + 2µ2)] tanh l

+ (b20 + 1)[16r2 − 24b0rµ1(1 + 2µ2) + 9(b20 + 1)µ2
1(1 + 2µ2)2].
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Thus, with accuracy up to δ1, the dimensional damping decrement β and the phase velocity of the wave c∗ are
equal to

β = kc∗b = kc0b0 + δkc0(b1 + b0c1), c∗ = c0(1 + δc1).

Substituting (3.8) and (3.12) into (3.7) and then into (3.3), we obtain the pressure perturbation

p = exp (−bt){(K0 sin (x− t) + L0 cos (x− t)) cosh (z + l)

+ δ[(K1 sin (x− t) + L1 cos (x− t)) cosh (z + l) (3.15)

+ ([Y1K0 + Y2L0] sin (x− t) + (−Y2K0 + Y1L0) cos (x− t))(z cosh (z + l)− sinh (z + l))]}/ sinh l,

where the constants Y1 and Y2 are defined by formulas (3.13) and Ki and Li can be obtained from additional initial
data. The free-surface profile is determined with accuracy up to δ1 from the condition (3.2):

ζ = coth l exp (−bt)[K0 sin (x− t) + L0 cos (x− t)

+ δ{(K1 − tanh l(Y1K0 + Y2L0)) sin (x− t) + (L1 − tanh l(−Y2K0 + Y1L0)) cos (x− t)]}/ν2
0 .

At the initial time t = 0, if the wave crest passes through the z axis and the wave height is equal to L, then

K0 = 0, L0 = ν2
0L tanh l, K1 = ν2

0L
2Y2 tanh 2 l, L1 = ν2

0LY1 tanh 2 l. (3.16)

Therefore, ζ can be rewritten as

ζ = L exp (−bt) cos (x− t).

With allowance for (3.16), the expression for the pressure perturbation (3.15) takes the form

p = Lν2
0 exp (−bt){cos (x− t) cosh (z + l) (3.17)

+ δ(Y2 sin (x− t) + Y1 cos (x− t))[(tanh l + z) cosh (z + l)− sinh (z + l)]}/ cosh l.

Substituting (3.17) and the relation c = 1 + δc1 into Eqs. (3.1), integrating them, and discarding terms higher
than δ, we obtain the phase velocities and the concentration perturbation γ. The expressions defining the velocities
are cumbersome but they are easy to derive. Therefore, we do not give them. The concentration perturbation have
the form

γ = L
ν2
0

cosh l
2δ exp (−bt)

α0(µ2 − µ1)(b20 + 1)2
sinh (z + l)

× [(2b0Y1 + (b20 − 1)Y2) sin (x− t) + ((b20 − 1)Y1 − 2b0Y2) cos (x− t)]. (3.18)

From (3.18) it follows that the concentration perturbation in the parameter δ is an order of magnitude smaller
than the perturbation of the pressure and free-surface profile. However, unlike in the problem with a uniform
concentration [1], the function γ is different from zero even in the first approximation in the amplitude parameter.

To illustrate the results obtained, we performed calculations for a disperse mixture of water with lighter
and heavier particles for the following parameters: l∗ = 10 m, λ = 1 m, ρ0

1 = 1000 kg/m3, η = 1.004 kg/(m · sec),
a = 0.25 · 10−2 m, α0 = 0.1, and δ∗ = 0.05 1/m. Then, the disperse-phase concentration in the quiescent layer
α0

2 = α0 exp (0.05z∗) for ρ0
2 = 500 kg/m3 and α0

2 = α0 exp (−0.05z∗) for ρ0
2 = 1500 kg/m3. Figure 1a shows

the perturbation of the disperse-phase concentration at the time t = 0 for a mixture of a liquid with particles
of density ρ0

2 = 500 kg/m3. The perturbation has a wave nature and is periodic in x with a period equal to
the wavelength. With increase in the depth, the perturbation damps and becomes virtually unnoticeable at a
depth of 1 m (z∗ = −1). The concentration perturbation damps rapidly with time (Fig. 1b). Similar curves for
ρ0
2 = 1500 kg/m3 are presented in Fig. 2. A comparison of Fig. 1a and Fig. 2b shows that the wave propagation has

a greater effect on the particle distribution in the case ρ0
2 < ρ0

1. However, as follows from a comparison of Fig. 1a
and Fig. 2b, in this case, the perturbations of the disperse-phase concentration damp faster.
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Fig. 1. Perturbation of the disperse-phase concentration for ρ0
2 = 500 kg/m3: t = 0 (a) and 300 sec (b).
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Fig. 2. Perturbation of the disperse-phase concentration for ρ0
2 = 1500 kg/m3: t = 0 (a) and 300 sec (b).
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